

Mn/DOT Contract No. 89426—(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Update – Survey Results—Mn/DOT
Responders
District 1
Transportation Data Analysis (TDA) Office of Freight and Commercial Vehicle Operations (OFCVO)
Metro District Office of Investment Management (OIM)
November 14, 2007 Presentation to Minnesota Modeling Group 7

I

	Mn/DOT Contract No. 89426–475 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Update – Survey Results—Mn/DOT							
Table S1.1 Value of STM – Perspective of Mn/DOT Professionals								
	STM Value	Count	Min	Max	Average			
	II. Given the definition above, how valuable is development of a statewide travel model (STM)? Please use a scale of 0 (no value) to 5 (very valuable).	4	1	5	3.25			
					_			
	November 14, 2007 Presentation to Minnesot	a Modeling C	iroup		8			

-
The current regression approach to forecasting AADT on both Mn/DOT and local highways does not provide any origin-destination information. As Mn/DOT incorporates Intersection Control Evaluations and Traffic Impact Studies, the importance of getting future traffic volumes (especially on the local system) is important. In development performance measures for the Statewide plan, future AADT is a very important element in identifying future needs. The AADT has previously been used as an indicator for widening shoulders, expanding from 2 to 4 lanes, and installing cable median barrier.

Mn/DOT Contract No. 89426–(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Update – Survey Results—Mn/DOT
There are too many variables and changing conditions over time to develop a reasonably accurate and useful statewide travel model. MPO travel models serve the urbanized areas well and planning level traffic forecasts are adequate for Greater Minnesota planning and project programming needs. There possibly may be some value related to freight movements, but the feasibility and value of modeling is questioned due to constantly changing markets and conditions.
November 14, 2007 Presentation to Minnesota Modeling Group 10

Update – Survey Results—Mn/D0					
III. Level of Involvement	Count	Min	Max	Avera;	
Statewide Transportation Planning and Studies	5	3	5	3.6	
Highway Access Management and Traffic Impact Studi	es 5	2	5	3.4	
Long Range Transportation Plan (LRTP)	4	0	5	3.25	
Corridor Planning and Studies	5	2	4	2.8	
Regional Transportation Planning and Studies	5	0	4	2.8	
Development of Statewide or Regional Performance Measures	5	0	4	2.8	
Statewide Transportation Improvement Plan (STIP)	5	1	5	2.6	

Mn/DOT Contract No. 89426—(PS 161); NDSU P Feasibility of a Statewide Travel Demand Model Update – Survey Re	esult	3500-24 . S	Mn/	DOT
III. Importance of Planning Activity	Count	Min	Max	Average
Long Range Transportation Plan (LRTP)	3	5	5	5
Regional Transportation Planning and Studies	4	4	5	4.5
Transportation Improvement Plan (TIP)	4	3	5	4.3
Statewide Transportation Planning and Studies	5	3	5	4.2
Corridor Planning and Studies	5	3	5	4
Funding and Programming Project Prioritization and Programming (based on benefits and needs analysis)	4	3	5	4
Statewide Transportation Improvement Plan (STIP)	4	2	5	3.8
Evaluate Impact of Network Changes—Capacity Increases— additional lanes, roadway improvements, new road	4	3	5	3.8
Development of Statewide or Regional Performance Measures	5	2	5	3.4
Special Generators Analysis (airports, intermodal transfer centers, trade centers, ethanol plants, elevators, etc.)	4	2	5	3.3
Pavement Life studies—roadway wear, timing of rehabilitation	3	2	4	3.3
Truck Size and Weight studies; Spring Load restrictions	4	2	4	3.3
Modal shift studies	3	3	4	3.3
Highway Access Management and Traffic Impact Studies	5	3	4	3.2
Bypass Studies	4	2	4	3
Evaluate River Crossings and Bridges (emphasis on state lines)	3	2	4	3
Freight Planning	4	1	5	3
Safety Planning and Analysis	4	1	4	3

Ma/DOT Contract No. 89426–(PS 161); NDSU F Feasibility of a Statewide Travel Demand Model Update – Survey Ro	roject# 4350 esults-)-2470-FA —MI	R001115)5 OT
III. Adequacy of Travel Demand Information	Count	Min	Max	Average
Long Range Transportation Plan (LRTP)	3	2	5	3.7
Transportation Improvement Plan (TIP)	4	2	5	3.3
Project level traffic forecasting for Benefit-Cost Analysis	4	2	4	3.3
Land Use Planning	3	2	4	3.3
Corridor Planning and Studies	5	2	4	3
Statewide Transportation Improvement Plan (STIP)	4	2	5	3
Evaluate River Crossings and Bridges (emphasis on state lines)	3	2	4	3
ITS Planning-location of VMS/DMS, ATIS, etc	2	3	3	3
November 14, 2007 Presentation to Minnes	ota Modeling	Group		13

Update – Survey R	esul	ts—	-Mn	/DOT
III. Adequacy of Travel Demand Information	Count	Min	Max	Average
Regional Transportation Planning and Studies	4	1	4	2.8
Bypass Studies	4	2	3	2.8
Funding and Programming Project Prioritization and Programming (based on benefits and needs analysis)	4	2	4	2.8
Evaluate Impact of Network Changes—Capacity Increases—additional lanes, roadway improvements, new road	4	1	4	2.8
Interchange Justification Reports (non-MPO areas)	4	1	4	2.8
Safety Planning and Analysis	4	2	4	2.8
Traffic Diversion for Construction; Detour Analysis and evaluation	4	2	3	2.5
Passenger Rail Planning	2	1	4	2.5

MinDOT Contract No. 8940–105 (10); NDSU Projecti Feasibility of a Statewide Travel Demand Model Update – Survey Resul	43500-24 ts—	70-FARG	011195)T
III. Adequacy of Travel Demand Information	Count	Min	Max	Avera
Highway Access Management and Traffic Impact Studies	5	1	4	2.4
Emergency PlanningTraffic Diversion and Evacuation	3	1	3	2.3
Special Generators Analysis (airports, intermodal transfer centers, trade centers, ethanol plants, elevators, etc.)	4	2	3	2.3
Pavement Life studies—roadway wear, timing of rehabilitation	3	0	4	2.3
Truck Size and Weight studies; Spring Load restrictions	4	0	4	2.3
Modal shift studies	3	2	3	2.3
Statewide Transportation Planning and Studies	5	1	4	2.2

Update – Survey Results—Mn/DOT						
III. Adequacy of Travel Demand Information	Count	Min	Max	Average		
Major Corridor Analysis (multi-county or multistate)	3	1	3	2		
Funding and Programming evaluate funding scenarios (gas tax rates, etc.)	4	1	4	2		
Transit alternative analysis	2	1	3	2		
Freight Planning	4	1	3	2		
Recreational Travel/Tourism Planning	3	1	3	2		
Development of Statewide or Regional Performance Measures	5	1	4	2		
Intermodal Connector Studies	4	1	2	1.8		
Intercity Bus Planning	2	1	2	1.5		
Weigh station location	4	0	3	1.5		
Analyzing Impact of Trade Agreements	2	1	1	1		

V. Data Sources		Count	Percen
	County Business Survey	1	20
Employment	MPO databases	2	40
	Employment/establishment survey	0	0
	Commercial vendor	0	0
	Census Transportation Planning Package (CTPP)	1	20
Economic	Input-Output Model Data	0	0
Forecasts	Regional Economic Model data	1	20
	Bureau of Economic Analysis	0	0
	State Agency Forecast	2	40
	Commercial Vendor	1	20

τ	Jodate – Survey Results–– N	/In/DC)T
	P 20		
V. Data Sourcer		Count	Perc
Household	Census Transportation Planning Package (CTPP)	1	2
Socioeconomic Data	Commercial Vendor	0	
	MPO Networks	3	6
	State Road Inventory or Management System	3	6
	Bus published information	1	2
	TIGER	0	
	National Highway Planning Network (NHPN)	0	
	Freight Analysis Framework (FAF) from FHWA	1	2
Network	NTAD from BTS	0	0
	Highway Performance Monitoring System (HPMS)	2	4
Traffic Data	In house Counts	3	6
	In house travel times	2	4
	In house speeds	1	2
	Counts speeds on travel times from other econor	2	6

		1		
VI. STM Analyses/Scenarios of Importance	Count	Min	Max	Averag
Traffic Forecasting (Automobile and Truck)	5	2	5	4
Highway Scenario Analyses -(evaluate network changes—added lanes, improved roads, new roads, traffic diversions, traffic loadings on highways, impact of spring load restrictions, etc)				
Truck Flow Analysis	5	1	5	3.4
MPO External and Through Trip Analysis	5	2	4	3.2

Undate – Survey Result	sN	Лn	/D	от
opunte Burrey Result				-
VI. STM Analyses/Scenarios of Importance	Count	Min	Max	Avera
Policy Analyses (e.g. in the area of finance, transportation funding scenarios, and program (project) prioritization using estimates of VMT and VHT)	5	1	4	2.
Special Generator Analysis (e.g. airports, ethanol plants, tourist attractions, intermodal transfer centers)	5	2	5	2.
Geographic Level of Analyses (longer distance trips and should be used to supplement the urbanized area travel demand models. For urbanized area studies, the STM should provide external- external and external-internal trips for the MPO models. For statewide corridors such as 19-4, the STM model should be the basis of the analysis outside of the urban areas, with the capability of the results being integrated with the urban area models, where appropriate)	5	2	3	2.
Intercity recreational travel analysis	5	1	5	2.

Mn/DOT Contract No. 89426—(PS 161); ND8U Project# 4: Feasibility of a Statewide Travel Demand Model Update – Survey Result	500-2470 S—_N	-FAR(011195 / D()T
VI. STM Analyses/Scenarios of Importance	Count	Min	Мах	Average
Safety Analysis (e.g. analyze and track crash information or relate functional class to crash rates)	5	0	5	2.2
Routing Analysis	5	1	3	2.2
Rural Location Analysis—(e.g. River Crossings and Bridges (especially at the state line) or Rural Interchange Justification Reports (non-MPO areas))	5	1	3	2
Commodity/Freight Flow Analysis (non-modal)	5	0	3	1.6
Statewide Rail Freight Analysis	5	0	3	1.4
Air and Rail Passenger Movements	5	0	2	1
Inter and Intrastate Bus Analysis	5	0	2	0.8
Non-motorized Analysis	5	0	1	0.6
November 14, 2007 Presentation to Minnesota Modeli	ng Group			23

Update – Survey Result	s—1	Mn	/D	ОТ
VII. Coordination Issues and Challenges Importance	Count	Min	Max	Average
Interface the Statewide Model with the MPO Models	5	1	5	3.6
The Statewide Model should be Geographic Information System (GIS) – based (compatible with existing data sets)	5	1	5	3.4
Coordinate the Statewide Model External Stations with the MPO External stations (location and traffic forecast).	5	1	4	3
Coordinate between the Statewide and the MPO Socio- Economic Forecasts – establish and use Statewide Forecast Controls for the Statewide Model	5	1	4	3
Coordinate and work with RDCs	5	1	4	2.4
Coordinate Model information with neighboring States	5	1	4	2.4
Coordinate the format of the Statewide and MPO model report formats	5	1	5	2.2

Update – Survey Result	<u>s</u> —	M	n/I	001
VIII. Barriers to Development	Count	Min	Max	Average
Data challenges-data not available, data not adequate, data collection will be costly	5	4	5	4.6
Modeling challenges—too complex to model and consistency, calibration, validation, and accuracy issues difficult to deal with	5	3	5	4
Lack of expertise and staff to build and maintain the model	5	3	4	3.8
Not well understood—value and use of model not clearly understood by decision makers	5	2	4	3.2
Perceived as redundant (regional and MPO models and trendline forecast are sufficient)	5	2	5	3
Funding limited or not available	5	1	4	2.6
No Champion (No one to pursue the development aggressively and communicate its value)	5	1	4	2
Coordination issues and challenges difficult to deal with	5	1	4	2
Perceived as controversial (multiple forecasts will provide more controversy than solution)	5	1	4	1.8

I. Respon	Iders Delaware	Georgia Ida
Kansas	Kentucky	Maryland
Maine	North Dakota	Ohio
Oregon	Rhode Island	South Dakota
Tennessee	Texas	Virginia
Wisconsin	Wyoming	U

MmDOT Contract No. 89426—(PS 161): NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Update – Survey Results—Mn/MPOs
 Responders La Crosse Area Planning Committee Rochester-Olmsted Council of Governments St Cloud Area Planning Organization Metropolitan Council of the Twin Cities Duluth-Superior Metropolitan Interstate Council
November 14, 2007 Presentation to Minnesota Modeling Group 28

	Metro	St.	LAPC	Rochester	Duluth
		Cloud			
Area covered jurisdiction	2977	350	About 300	650	150
Area covered in model	10879	350	About 115	Approximately 50 sq. mile	150
Population in the jurisdiction	2821779 (2006 Estimate)	126,750	About 110,000	Approx 110,000 in modeling area;	150,000
Number of TAZ	1632	261	About 330	442 (600)	639
FAZ			330		

	Upda	ite – S	urvey]	Results	-Mn/MPOs
Table S3.9 Modeling	Goals and Needs - Peak hour	Periods of Analy Peak period	sis 24 hour ADT	Other time period (Off-Peak)]
Turn movements	St. Cloud Rochester (a)		LAPC St. Cloud Rochester (e)		
Link volumes *	Metro St. Cloud Rochester (c)	Metro	Metro, LAPC (?) St. Cloud Duluth	Metro	 (a) Needed for many project developme activities/ currently derive using model data in a manual process (b) Very limited need
Corridor volumes	Metro St. Cloud Rochester(a)	Metro	Metro, LAPC (?) St. Cloud Rochester (e) Duluth	Metro	 (c) Not currently modeled (d) Generated outside of traffic model (e) Current model provides this
Broad regional movements	Metro St. Cloud	Metro Rochester(b)	Metro, LAPC (?) St. Cloud Rochester (e) Duluth	Metro	
Transit demand	Rochester (d)	Metro	Metro Rochester (d)	Metro	

Update – Survey Results—Mn/M						
А	ditional or New	ver Data are Ne	eded			
	High Priority	Medium Priority	Low Priority	Data are Adequate		
External Station Survey	Metro Rochester Duluth (1)	LAPC	St. Cloud			
Household Travel Survey	Metro St. Cloud	LAPC Rochester Duluth				
National Travel Survey		LAPC	Metro St. Cloud	Rochester Duluth		
Trip Generation Rates	Metro	St. Cloud Rochester Duluth	LAPC Duluth(2)	LAPC Duluth		
Land Use Base Year Data	St. Cloud		Metro Duluth (2)	LAPC Rochester		
Land Use Future Data	LAPC St. Cloud Duluth (3)		Metro	Rochester		

Ma/DOT Contract No. 89 Feasibility of a Statewide Update —	426—(PS 161); Travel Demand	i NDSU Pro d Model	ject# 43500-2 ults	470-FAR0011 Mn/M	195 IPOs
	Additional or Nev	ver Data are N Medium	Low	Data are	
	Priority	Priority	Priority	Adequate	
Employment Base Year	Metro St. Cloud Duluth (4)		Rochester		
Employment Future Year	Metro, LAPC St. Cloud	Duluth		Rochester	
Population Base Year	Metro St. Cloud			LAPC Rochester Duluth (5)	
Population Future Year	Metro, LAPC St. Cloud	Duluth		Rochester	
Household Demographics and Income Base Year	Metro		Rochester	LAPC St. Cloud Duluth (6)	
Household Demographics and Income Future Year	Metro, LAPC		Rochester	St. Cloud Duluth (7)	
November 14, 2007	Presentation t	o Minnesota	Modeling Gr	oup	39

Update – S	Surve	y Resi	ults—	Mn/N
•				
Addi	tional or New	er Data are N	eeded	
	High Priority	Medium Priority	Low Priority	Data are Adequate
To Enha	nce Your Exi	sting Modelin	ng Efforts	
Detailed data of all types for operations modeling		Rochester	Metro, LAPC St. Cloud Duluth	
Data for determining the effects of higher fuel prices		Metro, LAPC	St. Cloud Rochester Duluth (8)	
Impacts of Congestion	Metro, LAPC St. Cloud	Rochester Duluth (9)		
Air Quality Analysis	Metro	St. Cloud	Rochester Duluth	LAPC

	Mn/DOT Contract No. 894 Feasibility of a Statewide T Update – \$	126—(PS 16 Fravel Dems Surve	1); NDSU Pro and Model	iect# 43500-: ults—	2470-FAR001 -Mn/N	/IPOs
Ι	Ad	ditional or Ne	wer Data are No	eded		I
Т		High Priority	Medium Priority	Low Priority	Data are Adequate	Ī
	To Enl	nance Your E	xisting Modelin	g Efforts		1
I	Modeling for Transit	Metro	Duluth	LAPC St. Cloud Rochester		
I	Data to support another form of travel demand modeling (activity, tour, etc.)	Metro		St. Cloud Rochester	LAPC	
Т	Modeling Large Trucks	Metro	Rochester Duluth	LAPC St. Cloud		1
	Modeling Commercial Vehicle Traffic (home delivery, contractors, home health, etc.)		Metro Rochester Duluth	LAPC St. Cloud		
	November 14, 2007	Presentation	n to Minnesota	Modeling G	roup	41

N F	In/DOT Contra easibility of a S Upda	et No. 89426—(I tatewide Travel I te — Sur	'S 161); NDSU Project# Demand Model ' vey Resul t	43500-2470-FAR	(0011195 MPOs
	Number of External Stations	Date(s) of last calibration	Type of survey used or source of data about externally oriented trips (EX-EX, EX-IN, IN-EX)	Trip Purposes included in the external travel model	Date of Last Survey
Rochester	26	The E-E component was last "calibrated" in the early 1990's from the perspective that this is when the data was collected that was utilized to build an E-E trip table.	Roadside interview on TH52; Avenue of the Americas study	Roadside interview on TH52; Avenue of the Americas study Note 1	Last travel survey looking at external travel was around 1990
Duluth		June 2005	WisDOT External Station Origin/Destination Survey. For the MN side used small urban estimating technique from NCHRP #365.	External trips are not split by purpose. (i.e. they are treated as their own purpose)	WI - 2004

Mn/DOT Contract No. 89426–(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Update – Survey Results—Mn/RDCs
1. Responders
Region 9 Development Commission
Upper Minnesota Valley Regional Development Commission
November 14, 2007 Presentation to Minnesota Modeling Group 44

Mn/DOT Contract No. 89426-(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Update - Survey Results-Mn/RDCs
The RDC's have not done traffic analysis or modeling to date. The survey is not relative to RDC planning activities, however we are interested in this type of information if/when collected. Please keep this organization informed with any new developments relative to the transportation industry.
We (as well as many others) frequently use the traffic data that is provided by MnDOT and are thankful for it. We do however feel that rather than applying a standard 10% HCADT figure on the county and county State aid system that more accurate information needs to be employed. A recent freight study conducted in MnDOT District 7 illustrated the great variances in traffic movement on non-state roadways and that using a standard calculation is not appropriate.
November 14, 2007 Presentation to Minnesota Modeling Group 45

l	1. Responders
	Benton-Franklin Council of Governments, Washington
	Indian River County MPO, Florida
	The Mid-Ohio Regional Planning Commission
	Southeast Michigan Council of Governments
	Bi-State MPO, Arkansas
	Miami Valley Regional Planning Commission
	Pioneer Valley Planning Commission, Massachusetts

Feasibility of a Statewide Travel Demand Model STM – Valu	ie				
	Other State	DOTs	NARC Members		
III. Value of STM	Count	Average	Count	Averaş	
Corridor Planning and Studies	9	2.9	3	2.3	
Regional Transportation Planning and Studies	10	3.3	3	1.7	
Statewide Transportation Planning and Studies	10	3.3	3	3.0	
Statewide Transportation Improvement Plan (STIP)	8	2.2	3	2.7	
Transportation Improvement Plan (TIP)	8	2.3	3	1.3	
Long Range Transportation Plan (LRTP)	9	2.7	3	1.3	
Bypass Studies	9	2.4	3	3.0	
Evaluate River Crossings and Bridges (emphasis on state lines)	9	2.9	2	1.0	
Major Corridor Analysis (multi-county or multistate)	9	2.9	3	2.0	
Funding and Programming evaluate funding scenarios (gas tax rates, etc.)	9	1.6	3	0.7	
Funding and Programming Project Prioritization and Programming (based on benefits and needs analysis)	8	1.9	3	1.0	
Evaluate Impact of Network Changes-Capacity Increases-additional lanes,	9	3.0	3	2.3	

	Other State	er State DOTs NARC Membe		abers	
III. Value of STM	Count	Average	Count	Ave	
Interchange Justification Reports (non-MPO areas)	6	1.2	3		
Highway Access Management and Traffic Impact Studies	8	1.4	3		
Emergency PlanningTraffic Diversion and Evacuation	8	2.4	3		
Traffic Diversion for Construction; Detour Analysis and evaluation	8	2.1	3		
Project level traffic forecasting for Benefit-Cost Analysis	9	1.6	3		
Intercity Bus Planning	5	0.6	3		
Transit alternative analysis	6	1.2	3		
Passenger Rail Planning	8	1.9	3		
Freight Planning	8	2.3	3		
Special Generators Analysis (airports, intermodal transfer centers, trade centers, ethanol plants, elevators, etc.)	9	1.4	3		

STM – Valu	e				
	Other State	DOTs	NARC Members		
III. Value of STM	Count	Average	Count	Aver	
Land Use Planning	8	1.8	3		
Recreational Travel/Tourism Planning	7	1.1	3	(
ITS Planning-location of VMS/DMS, ATIS, etc	6	0.2	3	(
Intermodal Connector Studies	7	0.9	3	(
Development of Statewide or Regional Performance Measures	9	2.2	3	0	
Weigh station location	7	0.9	3	1	
Pavement Life studies—roadway wear, timing of rehabilitation	7	0.6	3	0	
Truck Size and Weight studies; Spring Load restrictions	6	0.3	3	0	
Safety Planning and Analysis	7	1.0	3	1	
Analyzing Impact of Trade Agreements	7	0.6	3	0	
Modal shift studies	9	2.0	3	0	
Non-motorized studies	6	0.3	3	0	
Others (write in) Public-Private Partnerships/ Toll analysis	1	4.0			

Adequacy of Travel Demand Information – Perspective of	Mn/DOT an	d Other S	tate DOTs Other Sta	ite DOT	
III. Importance of Planning Activity		Have STM	Developing STM	Planning on Developin g STM	No Plans
Corridor Planning and Studies	3	3.3	3.0	3.5	2.3
Regional Transportation Planning and Studies	2.8	3.3	2.0	2.7	3.0
Statewide Transportation Planning and Studies	3	3.6	2.5	2.3	2.3
Statewide Transportation Improvement Plan (STIP)	3	2.9	2.5	3.3	3.0
Transportation Improvement Plan (TIP)	3.3	3.4	3.0	3.3	3.3
Long Range Transportation Plan (LRTP)	3.7	3.4	2.5	3.0	2.3
Bypass Studies	2.8	2.8	2.0	3.0	3.0
Evaluate River Crossings and Bridges (emphasis on state lines)	3	2.5	1.0	2.7	0.5
Major Corridor Analysis (multi-county or multistate)	2	3.0	1.5	2.7	3.0
Evaluate Impact of Network Changes—Capacity Increases— additional lanes, roadway improvements, new road	2.8	3.6	2.0	3.0	2.7

	Mn/DOT		Other St	ate DOT	
III. Importance of Planning Activity		Have STM	Developing STM	Planning on Developin g STM	No Plans
Interchange Justification Reports (non-MPO areas)	2.8	1.2	1.5	3.0	2.5
Highway Access Management and Traffic Impact Studies	2.4	1.5	1.5	3.3	3.0
Emergency PlanningTraffic Diversion and Evacuation	2.3	2.0	1.5	1.0	2.5
Traffic Diversion for Construction; Detour Analysis and evaluation	2.5	2.1	3.5	2.7	2.5
Freight Planning	2	1.7	0.5	2.5	2.3
Special Generators Analysis (airports, intermodal transfer centers, trade centers, ethanol plants, elevators, etc.)	2.3	1.3	1.5	2.3	2.7
Intermodal Connector Studies	1.8	1.0	1.5	2.3	2.3
Development of Statewide or Regional Performance Measures	2	2.5	1.5	3.3	3.0
Modal shift studies	2.3	2.1	1.0	1.0	2.5

VI. STM Analyses/Scenarios Importance	Mn/DO	MN	NARC	Other St	ate DOTs	
	ľ	MPOS	s	Have STM	Developin g STM	Planning on Developing STM
Safety Analysis (e.g. analyze and track crash information or relate functional class to crash rates)	2.2	3.2	4.0	1.5	1.5	3.0
Routing Analysis	2.2	3.2		2.0	1.5	3.3
Rural Location Analysis—(e.g. River Crossings and Bridges (especially at the state line) or Rural Interchange Justification Remotes (non-MPO areas))	2	2.4	4.2	30	30	33
Commodity/Freight Flow Analysis (non-modal)	1.6	3.6	4.0	1.9	3.5	3.0
Statewide Rail Freight Analysis	1.4	3	4.2	0.9	1.5	2.5
Air and Rail Passenger Movements	1	2.2	3.4	1.4	1.5	2.5
Inter and Intrastate Bus Analysis	0.8	2.4	3.8	0.6	0.5	2.8
Non-motorized Analysis	0.6	1.8	1.6	1.0	1.5	2.8

VL STM Analyses/Scenarios In	aportance	Mn/DO	MN	NARC	Other St	ate DOTs	
		ľ		S S	Have STM	Developin g STM	Planning on Developing STM
Evacuation Scenario Planning	k Analysis				5.0		
Build/No Build Analysis (Identif	cation of "New Road" Users)				5.0		
Others (write in) Revenue Estir (Using Toll/Mode Choice Model	nation & Scenario Analysis				4.0		
Traffic Impact Studies (TIS) – Pr Results to Developer's Consultan DRI	ovide Select Link Analysis ts for Site Trip Distribution of				4.0		
Land Use					4.0		
Economic							

MuDOT Contract No. 8926–078 161; NDSU Project# 4350-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Task 6 –Modeling Challenges 8. Disaggregate models—aggregate in sense they predict the total or aggregate flows between the O-D pair by mode, route, and stratification and are usually calibrated on aggregated data in the form of trip tables 9. Interfacing with MPO models 10. Calibration and Validations 11. Modeling Challenges will depend on scale of modeling pursued.

November 14, 2007 Presentation to Minnesota Modeling Group 59

Mu/DOT Contract No. 89426—(PS 161); NDSU Project# 43600-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Task 6 –Modeling Challenges

12. Evolutionary Approach—start with simple base network and just highway and focus on areas where immediate gains can be made— Rochester, Duluth and Metro areas --and concentrate on just automobile and truck forecasting

November 14, 2007 Presentation to Minnesota Modeling Group

60

Mn/DOT Contract No. 89426—(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model
Data Issues and Challenges
1. Development Factors—land use,
population, employment
2. Economic Factors—GNP/GDP,
inflation, personal income etc
3. Social Factors—future lifestyle,
aging of population, lesiure time
4. Economic Factorsregulations
5. Transportation—facilities (location
and characteristics) and services
November 14, 2007 Presentation to Minnesota Modeling Group 63

MnDOT Contract No. 89426–(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Data Issues and Challenges
6. Techniques for data collection— home interviewmail /telphone surveys, urban cordons, multiple screenline surveys, travel information for public transportation—airline surveys, train surveys; commodity flow data
November 14, 2007 Presentation to Minnesota Modeling Group 64

Mn/DOT Contract No. 89426—(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model
Data Issues and Challenges
1. What data we have? – gather from survey and documentation and web sources
2. What data we need for what? – develop matrix
3. Data Sources? – what is out there?
4. Data Formats? What inventories?
5. Data Aggregation? – is it at TAZ level we want?
6. Data Consistency? Over time and geography
7. Data Collection? –quantitative, qualitative
8. Data Accuracy?
9. Data for calibration and validation?
November 14, 2007 Presentation to Minnesota Modeling Group 65
November 14, 2007 Presentation to Minnesota Modeling Group 65

Mn/DOT Contract No. 89426–(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model Resource Needs and Challenges
 Time Issues Staffing Issues Training Issues Cost Issues Computing Infrastructure Issues
 6. Institutional Arrangements 7. Public-Private Partnerships
November 14, 2007 Presentation to Minnesota Modeling Group 67

Mu/DOT Contract No. 89426—(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model
Recommended Action Plan
November 14, 2007 Presentation to Minnesota Modeling Group 69

November 14, 2007 Presentation to Minnesota Modeling Group

2	Mn/DOT Contract No. 89426—(PS 161); NDSU Project# 43500-2470-FAR0011195 Feasibility of a Statewide Travel Demand Model	
]	Cask 10 – Recommended Action Plan	
St	rategy 12 – Identify incremental	
	development of STM	
St	rategy 13 – Develop guidelines to	
	assess the accuracy and benefit of	
	STM	
St	rategy 14 – Develop plan for	
	updating data and models for STM	
	November 14, 2007 Presentation to Minnesota Modeling Group 73	

Mn/DOT Contract No. 89426-(PS 161): NDSU Project# 43500-2470-FAR0011195
Feasibility of a Statewide Travel Demand Model
Recommended Action Plan
December 1, 1 Classics Mailton Them. 24, 437
Recommended Strategy – Medium Term – 2 to 4 Years
Among medium term strategies are:
Strategy 5 – Assessing and Refining Existing Modeling
Efforts
Strategy 6 – Develop or Acquire New Data Sources
Strategy 7 – Enhancing Regional Models
Strategy 8 – Develop Base Case STM Model for Passenger
Movements and Commodity/Truck Flow
Strategy 9 – Identify stable funding sources
Strategy 10 - Interface with Regional and MPO models and
Trendline forecasts
Strategy 11 – Identify Institutional Considerations
Resource: Up to 500,000
November 14, 2007 Presentation to Minnesota Modeling Group 75

<text><section-header><section-header><section-header><text><text>